Get-Date

The Get-Date cmdlet is pretty nifty and gives you a lot of date/time formats you’d want to use in your script.

Like if you were to save files with a unique stamp, you’d want a date/time format like <year><month><day><hour><minute><second>

Here are some examples to achieve this goal, with outputs

Get-Date -Format s
2015-11-19T20:22:35

(Get-Date -Format s).Replace("-","").Replace(":","").Replace("T","")
20151119202235


"{0}{1}{2}{3}{4}{5}" -f (Get-Date).Year,(Get-Date).Month,(Get-Date).Day,(Get-Date).Hour,(Get-Date).Minute,(Get-Date).Second
20151119202235

$Date = Get-Date
"{0}{1}{2}{3}{4}{5}" -f $Date.Year,$Date.Month,$Date.Day,$Date.Hour,$Date.Minute,$Date.Second
20151119202235


Get-Date -Format yyyyMMddHHmmss
20151119202235

Get-Date -UFormat %Y%m%d%H%M%S
20151119202235

As you can see, all the given examples have the same output.

The first example doesn’t completely live up to the task as I described in my format, thus I need to remove several characters (by replacing them with a blank), which is the second example.

The third and fourth example will do a format-string and get all different get-date attributes. The fourth example is the same as the third, but in this case I fist put the output of the Get-Date cmdlet into a variable called $Date, this already makes the code a little bit less, but still longer than the Second example.

The fifth and sixth example use the formatting parameters Format and Uformat. Format is the .Net format and UFormat is the Unix format. Those are the shortest ones to use.

I myself like the switches for formatting a lot, for cases where you need to get the date the way you want it, without changing the localization settings of a server/computer.

Like for example in the EU, most (or maybe all) countries work with dates in the <day>-<month>-<year> pattern and time in the 24H format; while in the US dates are worked with in the <month>/<day>/<year> pattern and time in 12h format with AM and PM. But once working with files and sorting dates, the format as used in the example in usually used.

The PowerShell help tells us all the options for Uformat (each is preceded by a % sign):

  • c Date and time – abbreviated (Fri Jun 16 10:31:27 2006)

Date:

  • D Date in mm/dd/yy format (06/14/06)
  • x Date in standard format for locale (09/12/07 for English-US)

Year:

  • C Century (20 for 2006)
  • Y Year in 4-digit format (2006)
  • y Year in 2-digit format (06)
  • G Same as ‘Y’
  • g Same as ‘y’

Month:

  • b Month name – abbreviated (Jan)
  • B Month name – full (January)
  • h Same as ‘b’
  • m Month number (06)

Week:

  • W Week of the year (00-52)
  • V Week of the year (01-53)
  • U Same as ‘W’

Day:

  • a Day of the week – abbreviated name (Mon)
  • A Day of the week – full name (Monday)
  • u Day of the week – number (Monday = 1)
  • d Day of the month – 2 digits (05)
  • e Day of the month – digit preceded by a space ( 5)
  • j Day of the year – (1-366)
  • w Same as ‘u’

Time:

  • p AM or PM
  • r Time in 12-hour format (09:15:36 AM)
  • R Time in 24-hour format – no seconds (17:45)
  • T Time in 24 hour format (17:45:52)
  • X Same as ‘T’
  • Z Time zone offset from Universal Time Coordinate (UTC) (-07)

Hour:

  • H Hour in 24-hour format (17)
  • I Hour in 12 hour format (05)
  • k Same as ‘H’
  • l Same as ‘I’ (Upper-case I = Lower-case L)

Minutes & Seconds:

  • M Minutes (35)
  • S Seconds (05)
  • s Seconds elapsed since January 1, 1970 00:00:00 (1150451174.95705)

Special Characters:

  • n newline character (\n)
  • t Tab character (\t)

The help tells us that the settings for the Format switch can be found here. This is the information which is currently (when writing this blog) available on the site:

Format pattern Associated Property/Description
d ShortDatePattern
D LongDatePattern
f Full date and time (long date and short time)
F FullDateTimePattern (long date and long time)
g General (short date and short time)
G General (short date and long time)
m, M MonthDayPattern
o, O Round-trip date/time pattern; with this format pattern, the formatting or parsing operation always uses the invariant culture
r, R RFC1123Pattern; with this format pattern, the formatting or parsing operation always uses the invariant culture
s SortableDateTimePattern (based on ISO 8601) using local time; with this format pattern, the formatting or parsing operation always uses the invariant culture
t ShortTimePattern
T LongTimePattern
u UniversalSortableDateTimePattern using the format for universal time display; with this format pattern, the formatting or parsing operation always uses the invariant culture
U Full date and time (long date and long time) using universal time
y, Y YearMonthPattern

The following table lists the custom DateTime format patterns and their behavior. For more information, see Custom DateTime Format Strings.

Format pattern Description
d, %d The day of the month. Single-digit days do not have a leading zero. The application specifies “%d” if the format pattern is not combined with other format patterns.
dd The day of the month. Single-digit days have a leading zero.
ddd The abbreviated name of the day of the week, as defined in AbbreviatedDayNames.
dddd The full name of the day of the week, as defined in DayNames.
f, %f The fraction of a second in single-digit precision. The remaining digits are truncated. The application specifies “%f” if the format pattern is not combined with other format patterns.
ff The fraction of a second in double-digit precision. The remaining digits are truncated.
fff The fraction of a second in three-digit precision. The remaining digits are truncated.
ffff The fraction of a second in four-digit precision. The remaining digits are truncated.
fffff The fraction of a second in five-digit precision. The remaining digits are truncated.
ffffff The fraction of a second in six-digit precision. The remaining digits are truncated.
fffffff The fraction of a second in seven-digit precision. The remaining digits are truncated.
F, %F Displays the most significant digit of the seconds fraction. Nothing is displayed if the digit is zero. The application specifies “%F” if the format pattern is not combined with other format patterns.
FF Displays the two most significant digits of the seconds fraction. However, trailing zeros, or two zero digits, are not displayed.
FFF Displays the three most significant digits of the seconds fraction. However, trailing zeros, or three zero digits, are not displayed.
FFFF Displays the four most significant digits of the seconds fraction. However, trailing zeros, or four zero digits, are not displayed.
FFFFF Displays the five most significant digits of the seconds fraction. However, trailing zeros, or five zero digits, are not displayed.
FFFFFF Displays the six most significant digits of the seconds fraction. However, trailing zeros, or six zero digits, are not displayed.
FFFFFFF Displays the seven most significant digits of the seconds fraction. However, trailing zeros, or seven zero digits, are not displayed.
gg The period or era. This pattern is ignored if the date to be formatted does not have an associated period or era string.
h, %h The hour in a 12-hour clock. Single-digit hours do not have a leading zero. The application specifies “%h” if the format pattern is not combined with other format patterns.
hh The hour in a 12-hour clock. Single-digit hours have a leading zero.
H, %H The hour in a 24-hour clock. Single-digit hours do not have a leading zero. The application specifies “%H” if the format pattern is not combined with other format patterns.
HH The hour in a 24-hour clock. Single-digit hours have a leading zero.
K Different values of the Kind property, that is, Local, Utc, or Unspecified.
m, %m The minute. Single-digit minutes do not have a leading zero. The application specifies “%m” if the format pattern is not combined with other format patterns.
mm The minute. Single-digit minutes have a leading zero.
M, %M The numeric month. Single-digit months do not have a leading zero. The application specifies “%M” if the format pattern is not combined with other format patterns.
MM The numeric month. Single-digit months have a leading zero.
MMM The abbreviated name of the month, as defined in AbbreviatedMonthNames.
MMMM The full name of the month, as defined in MonthNames.
s, %s The second. Single-digit seconds do not have a leading zero. The application specifies “%s” if the format pattern is not combined with other format patterns.
ss The second. Single-digit seconds have a leading zero.
t, %t The first character in the AM/PM designator defined in AMDesignator or PMDesignator, if any. The application specifies “%t” if the format pattern is not combined with other format patterns.
tt The AM/PM designator defined in AMDesignator or PMDesignator, if any. Your application should use this format pattern for languages for which it is necessary to maintain the distinction between AM and PM. An example is Japanese, for which the AM and PM designators differ in the second character instead of the first character.
y, %y The year without the century. If the year without the century is less than 10, the year is displayed with no leading zero. The application specifies “%y” if the format pattern is not combined with other format patterns.
yy The year without the century. If the year without the century is less than 10, the year is displayed with a leading zero.
yyy The year in three digits. If the year is less than 100, the year is displayed with a leading zero.
yyyy The year in four or five digits (depending on the calendar used), including the century. Pads with leading zeros to get four digits. Thai Buddhist and Korean calendars have five-digit years. Users selecting the “yyyy” pattern see all five digits without leading zeros for calendars that have five digits. Exception: the Japanese and Taiwan calendars always behave as if “yy” is selected.
yyyyy The year in five digits. Pads with leading zeros to get five digits. Exception: the Japanese and Taiwan calendars always behave as if “yy” is selected.
yyyyyy The year in six digits. Pads with leading zeros to get six digits. Exception: the Japanese and Taiwan calendars always behave as if “yy” is selected. The pattern can be continued with a longer string of “y”s padding with more leading zeros.
z, %z The time zone offset (“+” or “-” followed by the hour only). Single-digit hours do not have a leading zero. For example, Pacific Standard Time is “-8”. The application specifies “%z” if the format pattern is not combined with other format patterns.
zz The time zone offset (“+” or “-” followed by the hour only). Single-digit hours have a leading zero. For example, Pacific Standard Time is “-08”.
zzz The full time zone offset (“+” or “-” followed by the hour and minutes). Single-digit hours and minutes have leading zeros. For example, Pacific Standard Time is “-08:00”.
: The default time separator defined in TimeSeparator.
/ The default date separator defined in DateSeparator.
% c Where c is a format pattern if used alone. To use format pattern “d”, “f”, “F”, “h”, “m”, “s”, “t”, “y”, “z”, “H”, or “M” by itself, the application specifies “%d”, “%f”, “%F”, “%h”, “%m”, “%s”, “%t”, “%y”, “%z”, “%H”, or “%M”.

The “%” character can be omitted if the format pattern is combined with literal characters or other format patterns.

\ c Where c is any character. Displays the character literally. To display the backslash character, the application should use “\\”.

Have fun with getting the date in your format.

Tags: , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: